Statistical descriptions of velocities, admixture concentrations and temperatures in turbulent flows are
generally based on empirical relations. Bert derived expressions which no longer resort to empiricism but
rest on general principles. The developed statistical models are fit for implementation in numerical
codes of turbulence in engineering and the environment.
| Brouwers, J.J.H. (2022). Statistical Descriptions of Inhomogeneous Anisotropic Turbulence. Mathematics 2022, 10(23), 4619 |
| Brouwers, J.J.H. (2021). Statistical Model of Turbulent Dispersion Recapitulated. Fluids 2021, 6(5), 190 |
| Brouwers, J.J.H. (2016). Statistical Model of Turbulent Dispersion Recapitulated Flow, mdpi Fluids 2021, 6(5), 190 |
| Brouwers, J.J.H. (2016). Statistical Models of Large Scale Turbulent Flow. Flow, Turbulence and Combustion 2016 1-31 |
| Kuerten, J.G.M. & Brouwers, J.J.H. (2013). Lagrangian statistics of turbulent channel flow at Reτ = 950 calculated with direct numerical simulation and Langevin models. Physics of Fluids, 25:105108. |
| Brouwers, J.J.H. (2012), Statistical description of turbulent dispersion. Phys. Rev. E 86, 066309. |
| Brouwers, J.J.H. (2010). Langevin and diffusion equation of turbulent fluid flow. Physics of Fluids, 22(8):085102 |
| Брауэрс Й.Й.X. (2010). Уравнение ланжевена для частицы жидкости в потоке с вызванной наличием стенок турбулентностью. Теоретическая и математическая физика, 163(2), 328-352. |
| Brouwers, J.J.H. (2010). Langevin equation of a fluid particle in wall-induced turbulence. Theoretical and Mathematical Physics, 163(2), 677-695 |
| Brouwers, J.J.H. (2007). Dissipation equals production in the log layer of wall-induced turbulence. Physics of Fluids, 19(10):101702 |
|
Brouwers, J.J.H. (2004). Eulerian short-time statistics of turbulent flow at large Reynolds number. Physics of Fluids, 16(7), 2300-2308.
|
|
Brouwers, J.J.H. (2002). On diffusion theory in turbulence. Journal of Engineering Mathematics, 44(3), 277-295
|